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Outline

� Introduction

� Classical CMOS

• Devices

• Power delivery

• SRAM memory

• I/Os

� Sub-threshold engineering

• Does steep SS make sense?

� Adiabatic computing

� Summary
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Transistors, performance, power ….

Source: Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith

� Density scales at traditional 
rate

• Caches get larger and 
contribute significantly to 
transistor count

� Clock speed and power level 
off

• Single thread performance is 
power limited 

• Need more efficient cooling 
solutions

� System performance can will 
pick up with parallelism

• Many low power cores will 
deliver same throughput

• Application dependent 
solution
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Where does the power go?
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� Power is not only a processor problem. The power problem 
penetrates the whole system 

Karthick Rajamani, Boulder TVC



5 IBM |              March, 2009 Haensch © 2005 IBM Corporation

IBM Research  |

Classical CMOS
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General considerations 

� Voltage scaling comes at the cost of performance
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General considerations 

� Voltage scaling comes at the cost of performance

� Silver bullet: Low V, low C, high I
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Scaling dilemma
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Ioff ~ 100 nA/µm
S > 60 mV/dec

IVth ~ 300 µm/L nA/µm

Cinv ~ 35 fF/µm2 ~ EOT ~ 0.8nm

Ion ~ 1.5 mA/µm
Vsat ~ 0.25V

mV125>thV

mV650>− thdd VV

� Simple voltage scaling is 
challenging



9 IBM |              March, 2009 Haensch © 2005 IBM Corporation

IBM Research  |

Device choices

IonIon @ given Ioff

IeffIeff @ given Ioff

� Short channel effects will 
degrade Ieff faster than Ion

–– IIonon ~ (V~ (V--VtVtsatsat))
αα

–– IIonon –– IIhighhigh ~ DIBL*V/2~ DIBL*V/2

–– IIlowlow ~ (V/2~ (V/2--VtVtsatsat))
αα Vds

I high @ (V,I high @ (V,½½V)V)

Ion @ (V,V)Ion @ (V,V)

I low @(I low @(½½V, V)V, V)

((VVgsgs, , VVdsds))

R,L,C
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Optimal technology - DIBL

� Low DIBL is more advantageous for power optimized 
performance ……
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Optimal technology – supply voltage

� …… because it allows reduction of supply 
voltage for maximum performance
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Optimal technology – gate length

� Superior electrostatics allows shortest gate length for 
FinFET

� Gate length are longer than expected, no significant 
difference for low power or high performance

1W
25W/cm2
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Optimal technology – density

� Only moderate gains in single core 

performance for low power 
technology

� Performance comes with 
parallelism and density advantage.
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Power delivery

� Bringing high voltage as close to the chip would reduce 
power loss
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� High voltage power delivery system � Put 
voltage down-converter close to the point of use

• minimizes power loss 

• improves supply stability

The case for high voltage power delivery to ICs
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� Power loss � Supply stability
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The case for high voltage power delivery to ICs

� Need efficient on-chip converters that are compatible with 
base CMOS technology
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The ultimate vision

Homogeneous
Multi-Processing
(e.g. 64 identical processors)

Critical Path = 5∆∆∆∆t

Total energy = 68

∆∆∆∆t

time

63×

1×

63×

1×

Vdd = 1V
Energy/Op = 1

Vdd=1V, Energy/Op = 1

Vdd = 0.4V
Energy/Op = 0.16

Data State

Operation

Heterogeneous
Multi-Processing

(e.g. 1 HP + 63 LP processors)

Critical Path = 5∆∆∆∆t

Total energy = 15

� Depending on load distribution, heterogeneous multi-

processing can achieve dramatic power reduction
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The case for high voltage power delivery to ICs

� Due to natural process variations ( e. g. Lgate) need to 
regulate supply voltages for individual cores for 
performance matching
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The case for high voltage power delivery to ICs

� Back-gate control would simplify voltage delivery
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� Increased gate delays → circuit design challenge,

� Increased sensitivity to process variability → device design 
challenge.
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Noise

� Resistive noise

• Current is a super-linear function of VDD

� Capacitive noise

• Charge is directly proportional to VDD

� Inductive noise

• Current is a super-linear function of VDD
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Low voltage circuit operation - SRAM
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� Read and write operation required a delicate balance of 
cell devices and threshold mismatch will impact 
operation window, in particular at low voltages

� Device choices can significantly reduce operating 
voltage for 6T SRAM cell
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Low voltage circuit operation - SRAM
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� 8T SRAM cell decouples read and write and opens up 
operating window for the cell

� Devices can be designed at minimum dimensions, 
which will benefit cell size
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� What is the real relationship?

Off-chip bandwidth vs on-chip cache
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� Architecture solution depends on application

Emma’s Law:  

Off-chip bandwidth vs on-chip cache

2     T  = (2  B)  X (8  C)
α+β α β

Bandwidth (B) Cache (C)

Threads (T)
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Low voltage signaling 

� Low voltage (e.g. 0.25V) driver, significantly reduced 
power consumption on final driver: ~ (0.25/0.925)2 = 13.7

• Full Vdd on the gates of the nMOS drivers for high speed

� Gated diode receiver 

• Recover data back to full Vdd swing

Out

φφφφ

φφφφ

Gated -Diode Sense -Amplifier

Level-
Shifting
Driver

Low voltage

supply

I/O load

VDD

In
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Low voltage scaling 

κ20.07–0.14Power line voltage instability

κ20.22–0.44Power line energy loss

κ20.056Power density

κ21Device density

κ0.33Chip operating frequency

10.5Chip operating voltage

Scaling

Factor
1����0.5VParameter
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Sub-Threshold 
Engineering
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Beating the sub-threshold slope limit
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Beating the sub-threshold slope limit
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Supply voltage for max performance
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� For high power parts there is little advantage for supply 
voltage reduction due to steep sub threshold devices

� For low power parts there is a significant power supply 
reduction potential if drive current equivalent to 
conventional FET can be achieved
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SS Engineering  - 22nm node
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� Performance SS slope trade-off window small for high 
power case

� For low power space there is a large trade-off window 
performance versus SS-slope
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On-current vs SS-slope, for constant performance
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� High power/ performance: can only tolerate 30% drive 
current degradation

� Low power / performance: can tolerate x 10 degradation 
of drive current
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Adiabatic Computing
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How much energy must be dissipated to charge a capacitor?

Adiabatic charging

(There’s an extra 

factor of π2/8 for a 
sinusoidal ramp.)
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Adiabatic computing

• All logic transitions must be directly 
driven by a clock waveform passing 
through FETs, Output is cycled 
back to input  

• Transitions cannot ripple 
through statically powered gates 
as in conventional logic.

• The ramp rate of the clock 
waveforms must be low to save 
energy.

• Try never to turn on an FET while 
there is a voltage difference 
between source and drain, since 
this would result in dissipation.

• Requires multiple clock 
waveforms 

Clock Synchronization 

J. S. Hall ‘Electroid’ Switches)
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Adiabatic computing

• If A = ‘1’ and B = ‘0’, or A = ‘0’ and 
B = ‘1’: Charge oscillates between 
input and output.

• In each cycle of the resonator 
(clock), the logic signal   is 
created and then removed from 
the output node capacitor.

• If A = B = ‘0’ or A = B = ‘1’: Output 
decoupled from input, and output 
kept to ground

• Clock participates energy, per 
half cycle
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Adiabatic CMOS penalty factors relative to conventional 
CMOS
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Incomplete reversibility also sets a lower limit on energy savings.
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Compare to adiabatic to CMOS
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Summary

� Classical CMOS has still life left

• Fully depleted devices will offer additional knobs for gate length scaling

• Careful analysis of power delivery and I/Os show opportunities to reduce 

power losses in the system 

• Low voltage operation is biggest knob for power reduction, however need 

massive parallelism to get performance back and watch out for a low voltage 

cache solution

� Sub-threshold engineering

• Steep sub-threshold devices have their place in the low power applications

• Need to push devices to obtain at least  10% on current as conventional device

� Adiabatic computing

• Concepts are there, not clear where application space is

• This needs further research
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